

Insights into Ethical AI Practices: Case Study of Engineering Students' Beliefs

Garima Dalal

Associate Professor,

Linguistic Empowerment Cell

Jawaharlal Nehru University

New Delhi

Email: garimadalal@jnu.ac.in

Abstract

The integration of Artificial Intelligence (AI) into academia has introduced significant ethical challenges that require careful consideration. This study synthesises the ethical perspectives of engineering students, who are among the primary users and future developers of AI technologies. This work, with input from 93 respondents, explores the gap between student's technical proficiency in AI and their comprehension of its ethical implications, including concepts such as fairness, transparency, and privacy. It also looks at the role of libraries and how they can contribute to providing constructive guidance to instil responsible use of AI.

Keywords: Belief, Ethical, AI Use, Library, Engineering

Introduction

Artificial Intelligence (AI) is redefining both education and society through digital transformation, but it also introduces a new phase of raising complex, ethical, and practical considerations. AI is not limited to experts using advanced computers, but is now widely used on smartphones, especially by students for education. Research indicates a notable gap between student's technical proficiency with AI and their grasp of its ethical complexities. A study by Ali et al. (2024) found that while students are familiar with AI tools, their understanding of ethical frameworks is limited. The concept that students most readily identified with was accountability, emphasising the user's responsibility for AI-generated content. This sense of personal responsibility was closely linked to concerns about academic integrity, particularly avoiding plagiarism by properly citing sources(Ali et al.,2024). A study of engineering students reveals a widespread adoption of generative AI tools,which are used regularly for their coursework;however, they acknowledge challenges such as the unreliability of AI-generated content(Jooste et al., 2025).

Further complicating the issue of student concerns about the broad impact of AI, research by Mihoc, Petrescu, & Pop (2025) reveals that students worry about a potential decline in human critical thinking skills due to over-reliance on AI. The study of Vieriu & Petrea (2025) also highlights AI's dual impact on students. While widely adopted and valued for enhancing academic performance, AI presents significant risks. Key challenges include the erosion of critical thinking skills, overreliance on technology and concerns over information accuracy. Ethically, it threatens academic integrity by facilitating dishonesty.

Learning and Ethical Development

Students primarily develop their understanding of AI ethics through hands-on experience and observation. The research by Ali et al. (2024) suggests that students learn by experimenting with AI tools, testing their capabilities, and observing how their peers utilise them to cut corners. This experiential learning is supplemented by their existing knowledge, which they use to fact-check AI output. However, Ali et al. (2024) also noted that academic guidance often takes a corrective approach, focusing on cheating and punishment rather than on productive and ethical ways to utilise AI, such as for brainstorming.

The crucial role of students' personal ethical beliefs in shaping their use of AI is also highlighted in recent studies. These inherent values often have a more substantial influence on their behaviour than institutional policies, which may not be fully understood or consistently applied. This suggests that fostering a strong ethical foundation is important in guiding students. Vieriu & Petrea's study recommends a balanced approach, calling for institutions to establish clear guidelines and training to mitigate these threats while leveraging the educational benefits of AI (2025).

The role of Educators and Librarians

To address the existing gaps in students' ethical AI literacy, educators and librarians are identified as key figures. Vinyard & Roosa (2025) emphasise the essential role of librarians in guiding students toward the responsible use of generative AI. With their expertise in information management, librarians can teach students to critically evaluate AI-generated content, identify inaccuracies, and properly cite sources. They can also provide technical guidance on crafting effective prompts to improve the quality of AI outputs (Vinyard & Roosa, 2025). For librarians to be effective in this role, they must engage actively with AI tools themselves and collaborate with other departments to develop cohesive instructional resources. (Vinyard & Roosa, 2025).

This calls for the development of comprehensive AI literacy programs. Such programs can not only equip students with the skills to use AI effectively but also foster the critical thinking necessary to navigate its ethical challenges. This review suggests that while engineering students are actively engaging with AI, their understanding of ethics remains a critical area for development. Their current perspectives are shaped by a combination of hands-on experimentation, peer influence, and a sense of personal accountability. To foster more robust ethical AI practices, a collaborative effort is needed from educators and librarians to provide a constructive guidance that moves beyond punishment and towards a deeper understanding of responsible AI usage.

The Study

This study investigated the belief systems of first-year B.Tech. students regarding the ethical use of artificial intelligence. The study focuses on the perspective and belief system of the students to analyse the responses and build a cohesive understanding. This work serves to encourage similar studies in other areas and learning environments. It is through such views that practical steps can be suggested for implementing effective strategies to utilise AI systems ethically by students.

Methodology

The first-year B.Tech students at the School of Engineering, Jawaharlal Nehru University, New Delhi, India, were approached and invited to participate in the study. All participants were pursuing their undergraduate engineering courses for at least two months. The participants were pursuing a B. Tech degree in Computer Science and Engineering (CSE) and Electronics and Communication Engineering (ECE). These undergraduate B.Tech. students study core modules in courses to complete their graduation. In the first semester, the school offers a range of academic and professional courses, including a three-credit course on English and Communication Skills. The class size is typically about 115 students; however, 93 participated in this study. The medium of instruction for all the courses is English.

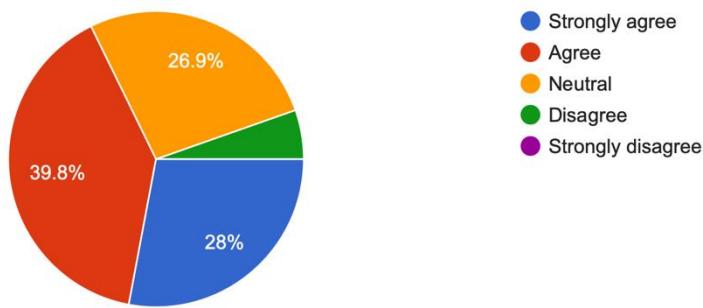
Data Collection

The data was collected using an online Google form via a structured questionnaire. The respondents were assured of confidentiality and anonymity before their participation. Ethical approval to conduct the study was obtained from all the participants in the online survey. The respondents were informed about the focus of the study. 93 respondents participated in the study. The questionnaire was segmented into seven distinct parts to systematically collect information, ranging from personal background to specific beliefs about AI's role in society and education.

Findings and Discussion

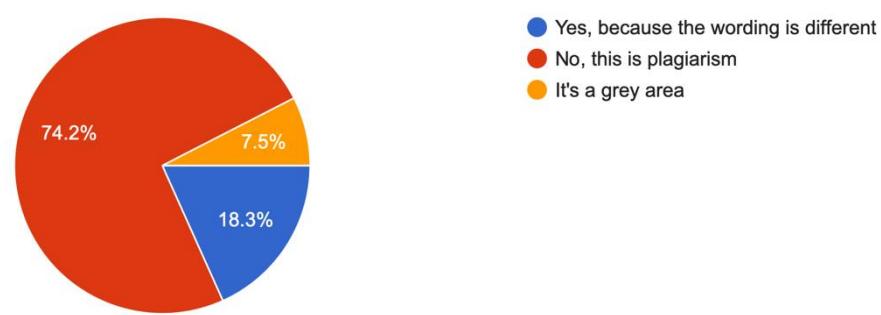
Participants:

A total of 93 respondents participated in the study. The sample was predominantly male, 95.7% with female participants constituting 4.3%. The age of respondents ranged from 17 to 21 years, with the majority, 76.3%, falling within the 18–19 age bracket.


In terms of geographical distribution, the largest cohort originated from Uttar Pradesh (25.8%), followed by Bihar (12.9%) and Rajasthan (12.9%). Smaller groups represented Haryana (8.6%), Uttarakhand (7.5%), and Telangana (5.4%), with the remaining 26.9% hailing from other Indian states. Consistent with the geographic data, 82.8% of participants identified as Hindi speakers, followed by speakers of Telugu (8.6%) and other Indian languages (8.6%). The sample was evenly divided between two engineering disciplines. 51.6% were enrolled in Electronics and Communication Engineering (ECE), while 48.4% were from Computer Science and Engineering (CSE). The findings are shared under four sections:

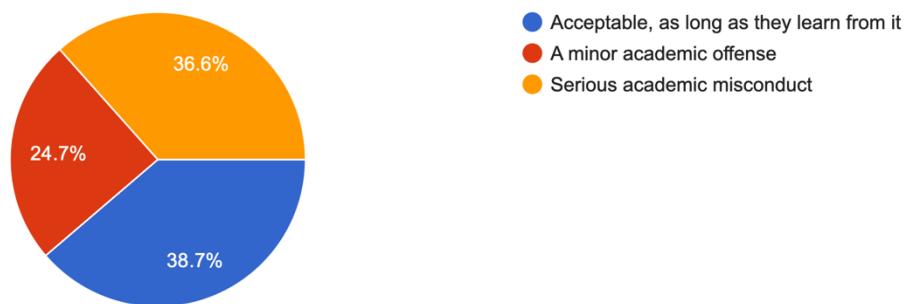
1. Foundational Ethical Stance – the Why.

The study explored perceptions regarding the long-term cognitive implications of artificial intelligence. This section lays the groundwork by establishing a baseline of experience and engagement among the respondents. Understanding the fundamental behaviours and awareness is crucial as it provides context for interpreting more complex attitudes and opinions.


The questions asked were:

- “Over-reliance on AI tools for studying can weaken critical thinking skills.” How much do you agree?

When presented with the proposition that over-reliance on AI tools for studying can affect critical thinking skills, the data reveals a widespread concern regarding the potential loss of analytical capabilities. A combined majority of 67.8% of the participants agreed with this sentiment (39.8% agreed, and 28.0% strongly agreed). Conversely, 26.9% maintained a neutral position, while only 5.4% expressed disagreement. These findings suggest that the respondents primarily view AI as a tool that, if treated as a crutch, may incur hidden costs to their intellectual development.

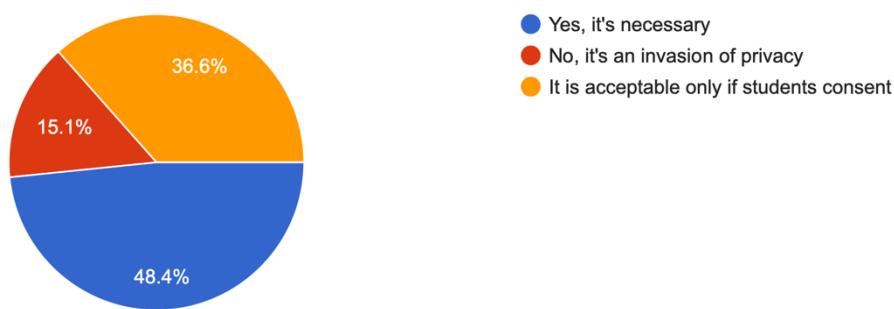

- Scenario 1: A student uses an AI tool to paraphrase a section from a textbook for their assignment without citing the original source. Is this acceptable?

The first scenario examines the acceptability of using AI to paraphrase textbook content for an assignment without citing the original source. The results indicate a strong consensus on acknowledgement

standards, with 74.2% of participants deeming this practice unacceptable. However, a notable minority of 18.3% view the practice as acceptable on the grounds that the specific wording has been altered, while 7.5% identified it as an ethical grey area. This data suggests that while most participants recognise this as plagiarism, nearly a quarter of the cohort harbour misconceptions regarding the necessity of citing AI-generated paraphrased material.

- Scenario 2: A student uses an AI tool to generate the entire code for a programming assignment and submits it. How would you characterise this action?

The second scenario explores the ethics of submitting AI-generated code for programming assignments. Unlike the paraphrasing scenario, opinions were significantly more

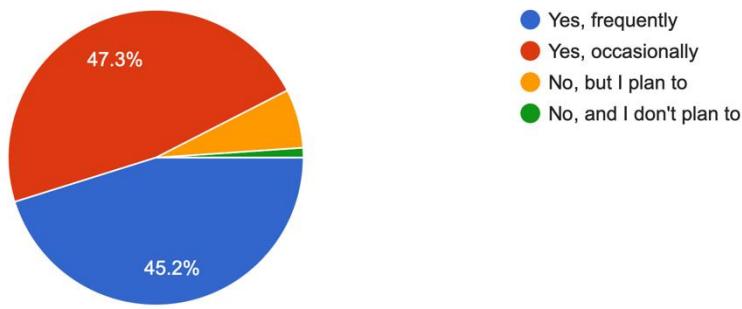

divided, highlighting the tension between AI as a learning aid and AI as a shortcut. 38.7% of the respondents consider the practice acceptable, provided that they learn from the generation process. 36.6% consider the action as serious academic misconduct, while 24.7% view it as a minor Academic offence. Collectively, while the majority recognises the submission of AI-generated code as an offence, with varying severity, a substantial portion of the participants justify the behaviour through the lens of pedagogical unity.

- In your own words, what does it mean to use AI “ethically”?

The single most crucial open-ended question to the participants regarding ‘what is ethical AI use’ encourages the participants to synthesise their own definition, revealing their priorities such as honesty, efficacy and fairness in their own words. The data reflect that the participants can be broadly categorised into five major sections while answering this question. Firstly, the predominant view is that ethical AI use centres on employing it as a supplement to human intellect, not a substitute. This means using AI to understand concepts better, cross-check facts, and gain new knowledge, rather than for written learning tasks like copying and pasting answers for assignments. The emphasis is on enhancing their own learning and critical thinking skills, not circumventing them. Therefore, predominantly, the participants feel that AI is a tool for learning and understanding.

Many respondents also highlight the importance of using AI responsibly, fairly and honestly. This includes ensuring that AI systems are not discriminatory based on factors such as caste or religion, and that their decisions are transparent and explainable. The idea of accountability is also crucial, suggesting that humans must remain responsible for the outcomes of AI systems. Furthermore, a significant aspect of ethical AI use involves aligning it with fundamental human values and rights. This includes a strong emphasis on protecting user privacy and data. The consensus is that AI should be designed and used in a way that is respectful and not harmful to individuals or society. In this light, a significant number of respondents use AI tools ethically but also expect respect for human values and privacy. Moreover, many respondents also believe that AI should be utilised to make work easier and more efficient, serving as a powerful tool to assist with tasks. However, there is a clear distinction made that it should not be used to complete a job without any human effort or thorough thought. The ethical line is drawn at using AI for assistance versus complete reliance. A core tenet of ethical AI usage is the prevention of negative consequences. This includes refraining from using AI for cheating, spreading misinformation, or any other unlawful or harmful activities. The focus is on ensuring that AI is a net positive for humanity and is used for good purposes. Therefore, only a few respondents believe in avoiding misuse and harm by AI.

- Scenario 3: An online proctoring system uses AI to monitor students for cheating during an exam by analysing their eye movements. Is this an ethical way to ensure academic integrity?

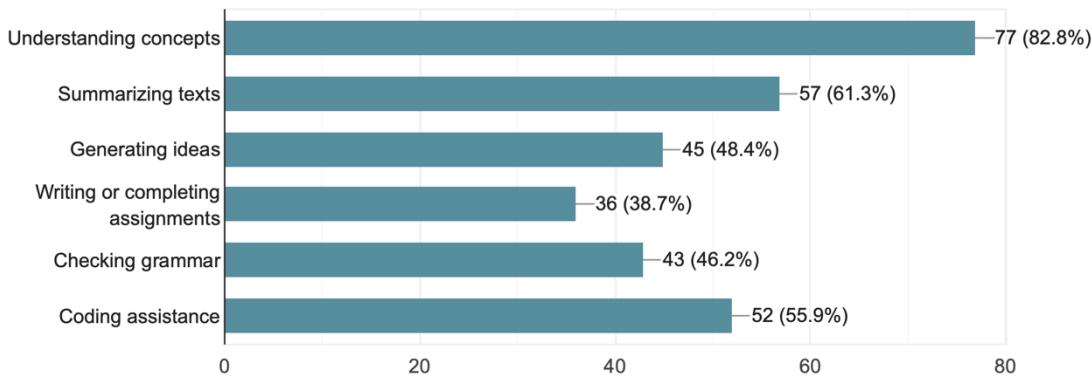

In response to scenario 3, which questioned the ethics of using AI tracking to prevent cheating, participant opinions were divided. The largest group, comprising 48.4% of the respondents, deemed such

monitoring essential for maintaining academic integrity. However, a significant portion of participants expressed ethical concerns: 36.6% felt this practice was only acceptable with explicit student consent, while 15.1% rejected it entirely, classifying it as an invasion of privacy.

2. Practical application and behaviour- the What

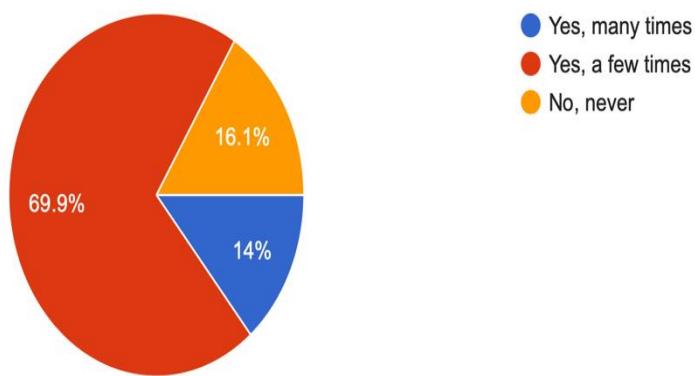
The findings move from general usage to specific judgments and values covered in this section, which is vital for uncovering how participants define and apply ethical principles in this context. It highlights areas of consensus, ambiguities and grey areas that characterise their understanding of the subject. The questions asked were as follows:

- Have you used AI tools (e.g., ChatGPT, Grammarly) to help with your studies since starting your B. Tech program?

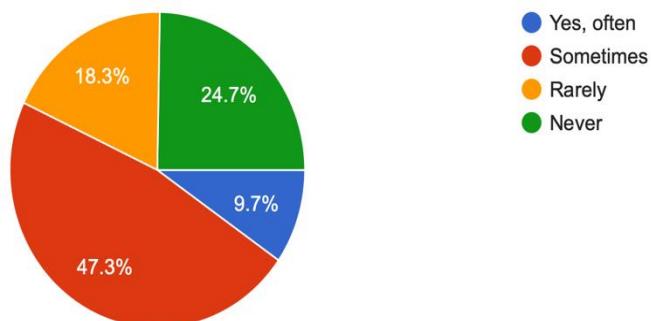


The respondents were asked if they had used AI tools, such as ChatGPT and Grammarly, to assist them with their studies since the beginning of their B. Tech. program. They were further asked about the academic task for which they have used or would consider using AI. This section establishes their actual behaviour. Comparing this to their

ethical beliefs from the scenarios mentioned above highlights the gap between what they believe and what they do.


While 47.3% of the respondents occasionally use AI tools to help with studies, 45.2% frequently use the tools since the beginning of their BTech program, while 6.5% agree that they plan to use the AI tools, and only 1.1% do not plan to use AI tools.

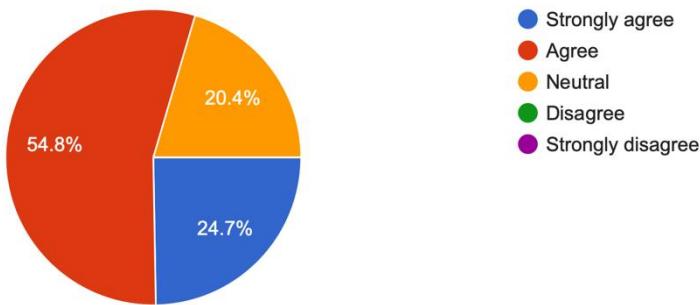
- For which academic tasks have you used or would you consider using AI? Select all that apply.


When examining the academic task that involves or considers the use of AI tools, 82.8% of respondents prefer using the tool to understand concepts. In comparison, 61.3% would like to use it for summarising text, and 55.9% use it for coding assistance. 48.4% use it for generating ideas, 46.2% use it for checking grammar and 38.7% use AI tools for writing or completing assignments.

- Have you ever used an AI tool to solve a problem in an assignment that you did not understand how to solve yourself?

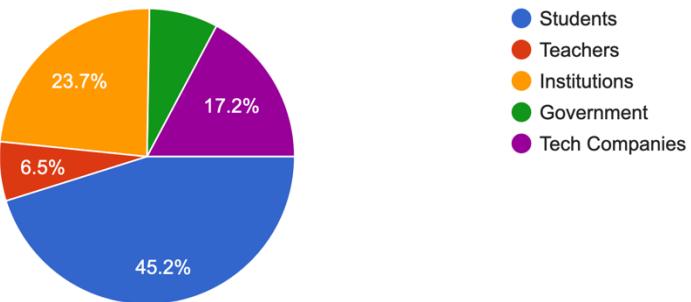
When asked about using AI to solve complex assignment problems, a combined 83.9% of respondents admitted to using these tools – 69.9% used them a few times, and 14% used them many times. Only 16.1% of the participants claimed they never used AI, even when they did not understand the material. This question probe is the fine line between using technology to assist learning versus using it to avoid the effort of learning.

- Do you feel a sense of guilt when using AI for academic tasks?



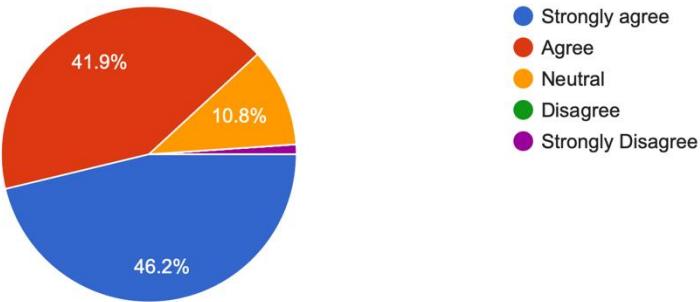
The respondents were asked if they felt a sense of guilt while using AI for Academic tasks. 47.3% of the respondents only feel a sense of guilt sometimes, 24.7% of the respondents never feel any guilt, while using AI, only 18.3% rarely feel a sense of guilt, and 9.7% often feel guilty when using AI for academic tasks. This emotional indicator reveals an internal conflict between the pressure to perform and their ethical conscience.

3. The Broad World View – the Big Picture


This section provides the scope to examine views on governance and accountability, identifying who the participants believe is responsible for oversight and what role, if any, they envision for institutional policies or guidelines. The questions were:

- “AI algorithms can sometimes be biased based on the data they are trained on.” How much do you agree?

This section shows their critical awareness of AI's technical and societal limitations. 54.8% of the respondents agree that AI algorithms can sometimes be biased based on the data. They are trained on by 24.7% strongly agree, and only 20.4% hold a neutral view. However, none of the respondents disagree or strongly disagree with the statement.


- Who do you believe is primarily responsible for ensuring the ethical use of AI in education?

The responses highlighted the divide between internal and external accountability. While the largest single group, comprising 45.2% asserts that students are responsible for their own ethical conduct, the majority of the respondents (combined 54.9%) believe the responsibility lies with others. Specifically, this outsourced responsibility is directed towards

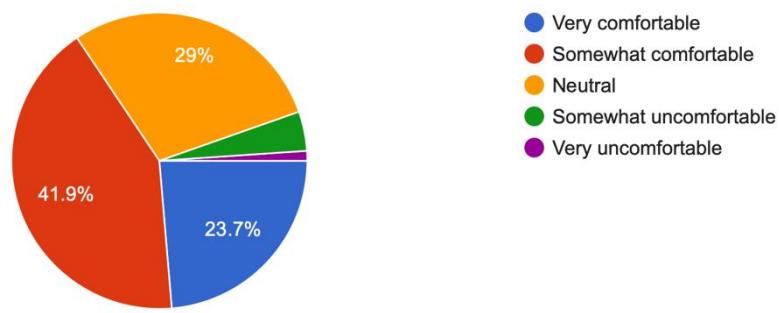
institutions (23.7%), tech developers (17.2%), the government (7.5%), and educators (6.5%).

- “The ability to use AI tools effectively and ethically is a crucial skill for future engineers.” How much do you agree?

The data reveals an overwhelming recognition of AI literacy as a mandatory scale for modern engineering. With a combined 88.1% of respondents agreeing or strongly agreeing, it is clear that the cohort views ethical AI usage as a core competency rather than an optional subject. Only a marginal percentage of 1.1% actively dismissed its

importance, while 10.8% remained undecided.

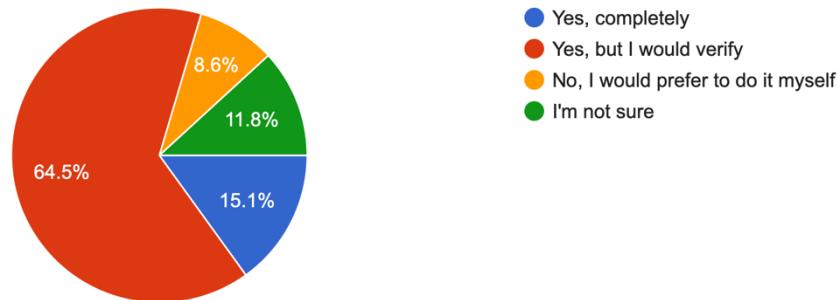
Based on the three responses above regarding algorithmic bias, the data reveals a high level of critical awareness regarding AI limitations. A combined total of 79.5% of respondents agreed that AI algorithms can be biased. This includes 54.8% who agreed and 24.7% who strongly agreed. Notably, 0% of respondents disagree with the statement, with the remaining 20.4% maintaining a neutral stance. Additionally, when asked who bears the primary responsibility for ethical use and education, the largest group, at 45.2%, places the burden on the students themselves. This is followed by educational institutions at 23.7% and tech companies at 17.2%. A minority believed that responsibility lies with the government, at 7.5%, or with teachers, at 6.5%. The attribution of ethical responsibility to students is very high. Moreover, if we look at AI as a professional competency, there is a near-unanimous consensus that effective and ethical AI usage is a vital professional skill. A combined 88.1% agreed with the statement (46.2% strongly agreed; 41.9% agreed). Only 1.1% strongly disagree, with 10.8% remaining neutral.


Based on the statistical breakdown, three primary findings emerge. Universal acknowledgement of laws – there is no denial within the cohort regarding the technical imperfections of AI. The respondent possesses a baseline data literacy that acknowledges that AI is not an objective “Blackbox” but a reflection of its training data. As the findings suggests a high sense of personal agency is associated with an internal locus of control. Rather than viewing AI ethics as a regulatory issue for the government or a product safety issue for tech companies, the respondents view it as a user-centric responsibility. They believe that, as users, they are the gatekeepers of ethical application. Integration into professional identity, where the respondents do not view AI skills as optional add-ons. The overwhelming agreement in “The ability to use AI tools effectively and ethically is a crucial skill for future engineers.” How much do you agree?” indicates that they receive AI literacy, specifically ethical literacy, as a core component of future engineering, indistinguishable from technical proficiency.

4. AI in the Library

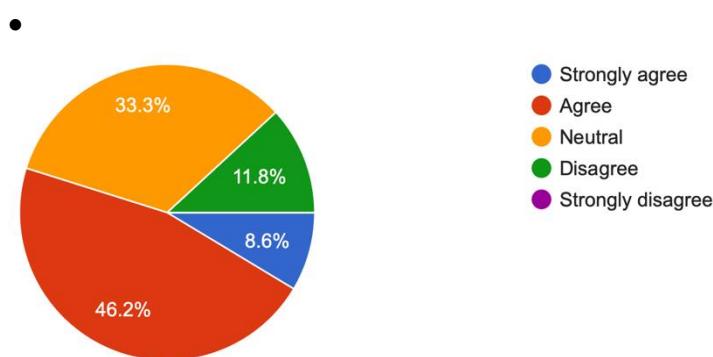
The findings presented in this section provide a comprehensive view of the participants' sentiments, assessing their overall confidence and expectations for the future. It is essential for understanding the broad implications of the findings and for framing the discussion and recommendations. It also looks at the role of libraries in this scenario.

The questions addressed were:


- How comfortable would you be with a library using AI to recommend books based on your borrowing history?

Most respondents are open to AI-driven book recommendations. Specifically, 70.9% of participants expressed comfort with the technology (41.9% somewhat comfortable and 29% very comfortable). A significant portion, 23.7%, remains neutral, while a minority expresses discomfort, with only 5.4% combined for somewhat and very uncomfortable.

combined for somewhat and very uncomfortable. The data indicate that the respondents are already accustomed to algorithmic suggestions, likely due to exposure to commercial platforms such as Netflix or Amazon. The overly optimistic response to Book recommendations suggests that respondents view this as a convenience feature rather than an intrusion of privacy.


- Would you trust an AI-powered tool to help you with literature reviews, provided you verify the information?

When asked about using AI for literature reviews, there is a high adoption rate, but with conditions. 79.6% of the respondents were willing to use AI (64.5% with verification and 15.1% completely). Only 8.6% prefer to do the work entirely, and 11.8% were

unsure. The response to the literature review question is arguably the most nuanced. While users are eager to utilise AI for efficiency, with almost 80% acceptance, the vast majority, at 64.5%, fall into the conditional trust category. This suggests that the respondents possess a degree of digital literacy; they view AI as a powerful tool for synthesis, but do not consider it an arbitrator of absolute truth.

- “AI in libraries will diminish the role of human librarians.” Do you agree or disagree?

There is a prevailing belief that AI will negatively impact human employment roles. A combined 54.8% agreed (46.2% agree, 8.6% strongly agree) that AI will diminish the role of the human librarian. One-third -nearly 33.3% remain neutral, and only 11.8% disagree with the notion. A conflict exists between the second and the third questions. The respondents are eager to

use AI tools that perform librarian-like tasks, such as making recommendations and providing research assistance; however, they simultaneously agree that these tools will diminish the role of the human librarian. This suggests an awareness that the very efficiency they desire may contribute to the potential obsolescence of the human workforce.

Discussion

Behaviour versus Ethics

The gap between ethics and action becomes apparent when comparing actual usage statistics with ethical scenarios, which reveal a significant disassociation between how students perceive academic integrity theoretically and how they practice it practically. In the scenario where a student uses an AI tool to paraphrase a section from a textbook for their assignment, without citing the original source, is acceptable or not. A substantial majority of 74.2% agreed that using AI to paraphrase a textbook section without citation is not acceptable. However, the usage data reveals that 38.7% of students actively use AI for writing or completing assignments and 61.3% for summarising text. This suggests that while students theoretically condemn plagiarism, a large portion engage in behaviours that often overlap with that very definition. This discrepancy indicates that students may perceive their own use of AI as assistance rather than the misconduct they condemn in hypothetical scenarios.

In addition, in the scenario where a student uses an AI tool to generate the entire code for a programming assignment and submits it. How would you characterise this action? – opinions on generating code for polarised, 38.7% found it acceptable, provided they learn from it, while 36.6% considered it serious misconduct. Interestingly, the actual usage statistics show that 48.4% of students use AI for coding assistance. The fact that actual usage of coding assistance is higher than the percentage of students who find generating complete code acceptable suggests that many students are operating in the grey area mentioned in the questionnaire. They likely differentiate between using AI for help or debugging versus generating entire solutions, which they are more likely to view as misconduct, aligning with the 24.7% who view the latter as only a minor offence.

Usage, Dependency, and Ethical Perception

The data presented highlights a significant paradigm shift in how BTech students approach academic tasks, revealing a complex relationship between practical utility, dependency and ethical conscience. The results paint a picture of near-universal adoption of AI. The motivation and emotional responses are very significant in questions ('Have you used AI tools, e.g., ChatGPT, Grammarly, etc., to help with your studies since starting your B. Tech. program?' & 'For which academic tasks have you used or would you consider using AI? Select all that apply'). The data indicate that AI usage has become the norm rather than the exception in technical education. With 92.5% of respondents already using AI tools (47.3% occasionally and 45.2% frequently), and only 1.1% firmly planning not to, AI integration appears to be saturated within this demographic.

When analysing the purpose of usage, a dual nature emerges. The majority, 82.8% use AI for understanding concepts. This suggests students are utilising AI as a personalised tutor to bridge gaps in classroom instruction, which is a pedagogical net positive. However, a significant portion uses AI for production rather than comprehension – 55.9% for coding assistance and, most concerning, 38.7% for writing or completing assignments. The distinction between coding assistance and completing assignments is where academic integrity policies face their greatest challenge. One is a debugging or syntactic tool, while the other is outsourcing labour.

The question on 'Have you ever used an AI tool to solve a problem in an assignment that you did not understand how to solve yourself?' probe is the critical boundary between learning and bypassing effort. In engineering education, the cognitive struggle to solve a complex problem is often where deep learning occurs. The data reveals that 83.9% of students admit to using AI when they encounter a problem they cannot solve (69.9% a few times, 14% many times). This suggests a decline in problem-solving resilience. Rather than engaging in prolonged cognitive effort or seeking help from peers or instructors, the immediate reflection is to consult AI. While this is an efficient approach, it risks creating a dependency where students can verify answers but do not generate solutions independently. The AI is functioning not just as a tool, but as a scaffold that students may be afraid to remove.

The question 'Do you feel a sense of guilt when using AI for academic tasks?' on cognitive dissonance and erosion of guilt. The emotional data regarding guilt offers a window into the students' evolving ethical framework. The largest group, comprising 47.3% feels guilt sometimes. This indicates a state of cognitive dissonance; students likely distinguish between acceptable help, such as grammar, checking, and explaining concepts, and unethical help, like generating an entire essay, and feel guilty only when they cross their own internal boundaries. Notably, 43% of respondents (24.7% never +18.3% rarely) feel little to no guilt. They suggest a shifting baseline for academic integrity. For nearly half the cohort, AI assistance is viewed as a legitimate resource – similar to a calculator or a textbook, rather than a form of cheating. 9.7% who often feel guilty represent the minority, who are actually aware of the conflict between institutional rules or traditional values and the pressure to perform.

Technologically optimistic, but critically grounded

The results of “AI algorithms can sometimes be biased based on the data they are trained on.” How much do you agree?” is significant because it suggests that the hype surrounding AI is not informing students of its risks. This provides a strong foundation for advanced educational modules on data ethics; we do not need to convince students that bias exists but instead teach them how to mitigate it. The responses to “Who do you believe is primarily responsible for ensuring the ethical use of AI in education?” offers a more complex narrative. Although it is positive that respondents feel a sense of agency, the very low attribution of responsibility to teachers and institutions is concerning. In an educational setting, reliance solely on student self-regulation for ethical use may be risky. This finding suggests a potential gap in the curriculum: students may feel that they are navigating the ethical landscape alone, without sufficient guidance from faculty or clear structural policies from the university. Moreover, “The ability to use AI tools effectively and ethically is a crucial skill for future engineers. How much do you agree?” confirms that the demand for this education is student driven. They recognise that their employability and professional success as engineers depend on their ability to use these tools ethically. This aligns with the global shift in engineering standards, where ethics is no longer a humanities elective but a technical necessity.

The data suggests that the respondents, as library users, view AI primarily as a productive tool. The preference to verify information suggests that users still view themselves as the gatekeepers of accuracy. The strongest sentiment of concern is found in the predicted decline of the human librarian. With nearly 55% of the respondents agreeing that human roles will diminish, there is a clear public perception that AI compete with, rather than complements, the librarian. Interestingly, only 11.8% disagree with this, suggesting that the narrative of AI replacing humans has taken a strong hold in the context of library sciences. Across all three questions asked about AI in the library, there is a consistent ‘neutral’ and ‘not sure’ block, ranging from roughly 12% to 33%. This suggests that a significant portion of the library demographic is currently in a wait and see mode. There are no techno optimists; instead, they are likely waiting for the technology to mature before forming a strong opinion.

Limitations and recommendations for further research

The study’s key limitations were the use of a single sample from a university and the reliance on a single data collection method. Furthermore, the findings were based on observed data; however, self-reporting can also be considered an additional means of collecting data. Future studies could include a comparative sample and the use of multiple research tools, such as focus group interviews, to enhance the understanding of the topic.

Conclusion

The survey results indicate that B.Tech. students have largely progressed beyond the adoption phase of AI and are now in the implementation phase. They have integrated these tools into their workflow primarily to enhance understanding and efficiency. However, the high reliance on AI for solving complex problems and completing assignments, coupled with a diminishing sense of guilt, raises concerns about a potential erosion in fundamental problem-solving skills and a redefinition of authorship in academia. The gap between ‘what they believe’ and ‘what they do’

is being bridged by an approach to education where efficiency often takes precedence over the learning process.

The data characterise the respondents as critically aware, digital natives, who view AI through a pragmatic lens. They accept the reality of algorithmic bias and overwhelmingly embrace the necessity of AI skills for their future careers. Most importantly, they exhibit a strong sense of individual accountability, placing the primary onus of ethical conduct on themselves rather than on external regulators or educators. This suggests that future engineering curricula should focus less on imposing rules and more on equipping students with the frameworks. They clearly desire to manage this self-accepted responsibility.

The integration of AI into the Library system is met with user optimism regarding its utility, but cynicism regarding its employment implications. The respondents are ready and willing to adopt AI for discovery and research, that is, recommendations and literature reviews, provided they maintain the ability to oversee the results. However, this adoption comes with the sobering realisation that such technologies may erode the traditional value proposition of the human librarian. This study suggests that libraries should not shy away from implementing AI, as the comfort levels are high. However, to combat the perception that human roles will diminish, the library must strategically pivot the librarian role from information retriever to information literacy guide, a role that requires human nuance. The data shows that respondents still value the ability to verify AI results when they say they want to do so.

References

Ali, N. S. B., Haider, N. M., Samiullah, N. D., & Shamsy, N. S. (2024). Assessing Students' understanding of ethical use of artificial intelligence (AI): A focus group study. *International Journal of Social Science & Entrepreneurship*, 4(3), 65–87. <https://doi.org/10.58661/ijssse.v4i3.301>

Fošner, A., & Aver, B. (2025). AI chatbots in higher education: Students' beliefs and concerns. *Sustainable Futures*, 9, 100734. <https://doi.org/10.1016/j.sfr.2025.100734>

Grey, S. (2025, April). Enhancing ethical reasoning in engineering education through student-created interactive ethical scenarios using generative AI. In 2025 *IEEE Global Engineering Education Conference (EDUCON)* (pp. 1–5). IEEE.

Han, B., Nawaz, S., Buchanan, G., & McKay, D. (2025). Students' perceptions: Exploring the interplay of ethical and pedagogical impacts for adopting AI in higher education. *International Journal of Artificial Intelligence in Education*, 1–26.

Jooste, J. L., Wolff, K. E., & Joubert, J. G. (2025). Engineering students' perceptions and use of generative artificial intelligence. *Computer Applications in Engineering Education*, 33, e70064. <https://doi.org/10.1002/cae.70064>

Kamali, S. E., & Samsami, R. (n.d.). *AI in engineering curricula: Adoption, challenges, and ethical considerations among engineering students*.

Khavasi, A. (2025). *Exploring the integration of generative AI in entrepreneurship education: Pedagogical and ethical dimensions: Case study in a Finnish University of Applied Sciences*.

Lazăr, A. M., Repanovici, A., Popa, D., Ionas, D. G., & Dobrescu, A. I. (2024). Ethical principles in AI use for assessment: Exploring students' perspectives on ethical principles in academic publishing. *Education Sciences*, 14(11), 1239.

Mihoc, T. D., Petrescu, M.-A., & Pop, E. L. (2025). Student views in AI ethics and social impact. In *Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025)* (Vol. 1, pp. 26–35). Scitepress. <https://doi.org/10.5220/0013139500003932>

Sakib, M. N., Manzo, M., & Yalamanchili, R. C. (2025, March). Navigating the impact of AI in engineering education: Enhancing learning outcomes and addressing ethical and assessment challenges. In *2025 ASEE-GSW Annual Conference*.

Usher, M., & Barak, M. (2024). Unpacking the role of AI ethics online education for science and engineering students. *International Journal of STEM Education*, 11(1), 35.

Vieriu, A. M., & Petrea, G. (2025). The impact of artificial intelligence (AI) on students' academic development. *Education Sciences*, 15(3), 343. <https://doi.org/10.3390/educsci15030343>

Vinod, G., & Guile, D. (2024, September). Preliminary insights into AI and engineering education in the US and UK: An exploratory study. *SEFI*.

Vinyard, M., & Roosa, M. (2025). Student perspectives on using generative artificial intelligence for research: A qualitative approach. *Portal: Libraries and the Academy*, 25(4), 729–752. <https://doi.org/10.1353/pla.2025.a971030>